
A
Major Project

on

FINGER COUNTING AND VIRTUAL MOUSE
USING CVLEARN

(Submitted in partial fulfillment of the requirements for the award of Degree)

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

By

E.VAMSHI YADAV (187R1A0577)

ANDREW DOMINIC FERNANDEZ (187R1A0578)

P KEERTHANA (197R5A0505)

Under the Guidanceof

V NARESHKUMAR
(AssistantProfessor)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

(Accredited by NAAC,NBA,Permanently Affiliated to JNTUH, Approved by AICTE, NewDelhi)

Recognized Under Section 2(f) & 12(B) of the UGCAct.1956,

Kandlakoya (V), Medchal Road, Hyderabad-501401.

2018-2022

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the project entitled “FINGER COUNTING AND VIRTUAL MOUSE

USING CVLEARN” being submitted by E VAMSHI YADAV(187R1A0577), ANDREW

DOMINIC FERNANDEZ(187R1A0578), P KEERTHANA(197R5A0505) in partial

fulfillment of the requirements for the award of the degree of B.Tech in Computer Science and

Engineering to the Jawaharlal Nehru Technological University Hyderabad, is a record of bonafide work

carried out by our team under our guidance and supervision during the year 2021-22.

The results embodied in this project have not been submitted to any other University or

Institute for the award of any degree or diploma.

V NARESH KUMAR DR.A.RAJI REDDY

(Assistant Professor) DIRECTOR

INTERNAL GUIDE

DR.K.SRUJAN RAJU EXTERNALEXAMINER

HOD

Submitted for viva voice Examination held on

ACKNOWLEDGEMENT

Apart from the efforts of us, the success of any project depends largely on the

encouragement and guidelines of many others. We take this opportunity to express

our gratitude to the people who have been instrumental in the successful completion

of this project.

We take this opportunity to express my profound gratitude and deep regard to

my guide Mr V.Naresh Kumar , Assistant Professor for his exemplary guidance,

monitoring and constant encouragement throughout the project work. The blessing,

help and guidance given by him shall carry us a long way in the journey of life on

which we are about to embark. We also take this opportunity to express a deep sense

of gratitude to Project Review Committee (PRC) Mr. A. Uday Kiran, Mr. J.

Narsimharao, Dr. T. S. Mastan Rao, Mrs. G. Latha, Mr. A. Kiran Kumar, for

their cordial support, valuable information and guidance, which helped us in

completing this task through various stages.

We are also thankful to Dr. K. Srujan Raju, Head, Department of Computer

Science and Engineering for providing encouragement and support for completing

this project successfully

We are obliged to Dr. A. Raji Reddy, Director for being cooperative

throughout the course of this project. We also express our sincere gratitude to Sri. Ch.

Gopal Reddy, Chairman for providing excellent infrastructure and a nice atmosphere

throughout the course of this project

The guidance and support received from all the members of CMR Technical

Campus who contributed to the completion of the project. We are grateful for their

constant support and help.

Finally, we would like to take this opportunity to thank our family for their

constant encouragement, without which this assignment would not be completed. We

sincerely acknowledge and thank all those who gave support directly and indirectly in

the completion of this project.

E VAMSHI YADAV (187R1A0577)

ANDREW DOMINIC FERNANDEZ (187R1A0578)

P KEERTHANA (197R1A0505)

i

ABSTRACT

The finger tracking system is focused on user-data interaction, where the user

interacts with virtual data, by handling through the fingers the volumetric of a 3D object that

we want to represent. This system was born based on the human-computer interaction

problem. The objective is to allow the communication between them and the use of gestures

and hand movements to be more intuitive, Finger tracking systems have been created. These

systems track in real time the position in 3D and 2D of the orientation of the fingers of each

marker and use the intuitive hand movements and gestures to interact.

This project promotes an approach for the Human Computer Interaction (HCI)

where cursor movement can be controlled using a real-time camera, it is an alternative to the

current methods including manual input of buttons or changing the positions of a physical

computer mouse. Instead, it utilizes a camera and computer vision technology to control

various mouse events and is capable of performing every task that the physical computer

mouse can. The Virtual Mouse color recognition program will constantly be acquiring real-

time images where the images will be undergone a series of filtration and conversion.

Whenever the process is complete, the program will apply the image processing technique

to obtain the coordinates of the targeted colors position from the converted frames. After that,

it will proceed to compare the existing colors within the frames with a list of color

combinations, where different combinations consist of different mouse functions. If the

current colors combination found a match, the program will execute the mouse function,

which will be translated into an actual mouse function to the users' machine.

ii

LIST OF FIGURES/TABLES

FIGURE NO FIGURE NAME PAGE NO

FIGURE 3.1 PROJECT ARCHITECTURE
FOR FINGER COUNTING
AND VIRTUAL MOUSE
USING CV LEARN

7

FIGURE 3.2 USE CASE DIAGRAM FOR
FINGER COUNTING AND
VIRTUAL MOUSE USING
CV LEARN

8

FIGURE 3.3 CLASS DIAGRAM FOR
FINGER COUNTING AND
VIRTUAL MOUSE USING
CV LEARN

9

FIGURE 3.4 SEQUENCE DIAGRAM FOR
FINGER COUNTING AND
VIRTUAL MOUSE USING
CV LEARN

10

FIGURE 3.5 ACTIVITY DIAGRAM FOR
FINGER COUNTING AND
VIRTUAL MOUSE USING
CV LEARN

11

iii

LIST OF SCREENSHOTS

SCREENSHOT NO SCREENSHOT NAME PAGE NO

5.1 FINGER COUNTING 22

5.2 GESTURE FOR 22
SCROLLING UP AND
DOWN

5.3 GESTURE FOR LEFT- 23
CLICK

5.4 GESTURE FOR 23
CURSOR MOVEMENT

5.5 GESTURE FOR 24
DRAG AND DROP

5.6 GESTURE FOR
RIGHT-CLICK

24

6.3 TEST CASE STATUS 26

TABLE OF CONTENTS

ABSTRACT i

LIST OF FIGURES ii

LIST OF SCREENSHOTS iii

1. INTRODUCTION 1

1.1 PROJECT SCOPE 1

1.2 PROJECT PURPOSE 1

1.3 PROJECT FEATURES 1

2.SYSTEM ANALYSIS 2

2.1 PROBLEM DEFINITION 2

2.2 EXISTING SYSTEM 2

2.2.1 DISADVANTAGES OF EXISTING SYSTEM 2

2.3 PROPOSED SYSTEM 3

2.3.1 ADVANTAGES OF PROPOSED SYSTEM 3

2.4 FEASIBILITY 3

2.4.1 ECONOMIC FEASIBILITY 3

2.4.2 TECHNICAL FEASIBILITY 4

2.4.3 BEHAVIOURAL FEASIBILITY 4

2.5 HARDWARE & SOFTWARE REQUIREMENTS 5

2.6 MODULE DESCRIPTION 6

3. ARCHITECTURE 7

3.1 PROJECT ARCHITECTURE 7

3.2 USE CASE DIAGRAM 8

3.3 CLASS DIAGRAM 9

3.4 SEQUENCE DIAGRAM 10

3.5 ACTIVITY DIAGRAM 11

4.IMPLEMENTATION 12

4.1 HAND TRACKING 12

4.2 FINGER COUNTING 12

4.3 VIRTUAL MOUSE 13-21

5.SCREENSHOTS 22

5.1 FINGER COUNTING 22

5.2 GESTURE FOR SCROLLING UPAND DOWN 22

5.3 GESTURE FORLEFT-CLICK MOUSE 23

5.4 GESTURE FORCURSORMOVEMENT 23

5.5 GESTURE FOR DRAGAND DROP 24

5.6 GESTURE FORRIGHT-CLICK 24

6.TESTING 25

6.1 INTRODUCTION TOTESTING 25

6.2 TYPES OF TESTING 26

6.3 TEST CASES 26

7.CONCLUSION

7.1 PROJECT CONCLUSION 27

7.2 FUTURE SCOPE 27

8.BIBILOGRAPHY

8.1 REFERENCES 28

8.2 GITHUB LINK 28

1. INTRODUCTION

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 1

1. INTRODUCTION

1.1 PROJECTSCOPE

This project is titled as "Hand tracking,finger tracking,virtual mouse using

open cv” The main objective of the proposed virtual mouse system is to develop an

alternative to the regular and traditional mouse system to perform and control the

mouse functions, and this can be achieved with the help of a web camera that captures

the hand gestures and hand tip and then processes these frames to perform the

particular mouse function such as left click, right click, and scrolling function.

1.2 PROJECT PURPOSE

The main goal of the project is to manage computers and other devices with

gestures other than pointing and clicking a mouse or touch display directly.This

project avoids the physical requirement of mouse and The application has been

designed to be cost effective and uses low cost input tools like webcam for capturing

hand as input.

1.3 PROJECT FEATURES

The functions of mouse like controlling of movement of virtual object have

been replaced by hand gestures.The main feature of the project is to identify the hand

gestures and with help of them we can drag,drop,click and scroll the mouse This

project is designed to operate with help of the webcam .It provides an efficient

interface for a user to interact with the computer and access the various applications

effortlessly.

2. SYSTEM ANALYSIS

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 2

2. SYSTEMANALYSIS

System analysis is the important phase in this process. The System is studied to the

minute details and analyzed. The system analyst plays an important role of an interrogator

and dwells deep into the working of the present system. In analysis, a detailed study of these

operations performed by the system and their relationships within and outside the system is

done. A key question considered here is, “what must be done to solve the problem?” The

system is viewed as a whole and the inputs to the system are identified. Once analysis is

completed the analyst has a firm understanding of what is to be done.

2.1 PROBLEMDEFINITION

The problems in this project are:To design motion tracking mouse which detect

finger movements gestures instead of physical mouse.• To design an application (.py file)

with user friendly user interface which provides feature for accessing motion tracking mouse

feature. The camera should detect all the motions of hand and performs the operation of

mouse.

2.2 EXISTINGSYSTEM

There are three types of existing system:

1. Track ball.

2. Mechanical Mouse

3. Optical Mouse.

2.2.1 DISADVANTAGES OF EXISTINGSYSTEM

1. Lasers are more accurate thanoptical

2. Slightly expensive

.

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 3

2.3 PROPOSEDSYSTEM

As the technology increase everything becomes virtualised. Any application should

either make human life more comfortable,more productive.Using the proposed system even-

though there are a number of quick access methods available for the hand and mouse

gesture for the laptops, using our project we could make use of the laptop and web-cam

and by recognizing the hand gesture we could control mouse and perform basic operations

like mouse pointer controlling, select and deselect using left click, and a quick access

feature for file transfer between the systems.

2.3.1 ADVANTAGES OF PROPOSED SYSTEM

● Great flexibility then existing system.

● Easy to modify anadapt.

● Less prone to physical damaged due to absence of physical device.

● Avoid themouse related wrist damage like RSI&CTS

2.4 FEASIBILITYSTUDY

The feasibility of the project is analyzed in this phase and business proposal is

put forth with a very general plan for the project and some cost estimates. During

system analysis the feasibility study of the proposed system is to be carried out. This

is to ensurethat the proposed system is not a burden to the company. Three key

considerations involved in the feasibility analysis are Economic,Technical and social

Feasibility

2.4.1 ECONOMICFEASIBILITY

This study is carried out to check the economic impact that the system will

have on the organization.The amount of fund that the company can pour into the

research and development of the system is limited. The expenditures must be justified.

Thus the developed system as well within the budget and this was achieved because

most of the technologies used are freely available. Only the customized products had

to be purchased.

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 4

2.4.2 TECHNICALFEASIBILITY

This study is carried out to check the technical feasibility, that is, the technical

requirements of the system. Any system developed must not have a high demand on

the available technical resources. This will lead to high demands on the available

technical resources. This will lead to high demands being placed on the client. The

developed system must have a modest requirement, as only minimal or null changes

are required for implementing this system.

2.4.3 BEHAVIOURALFEASIBILITY

The aspect of study is to check the level of acceptance of the system by the

user. This includes the process of training the user to use the system efficiently.The

user must not feel threatened by the system, instead must accept it as a necessity. The

level of acceptance by the users solely depends on the methods that are employed to

educate the user about the system and to make him familiar with it. His level of

confidence must be raised so that he is also able to make some constructive criticism,

which is welcomed, as he is the final user of the system

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 5

2.5 HARDWARE & SOFTWAREREQUIREMENTS

HARDWARE REQUIREMENTS:

Hardware interfaces specifies the logical characteristics of each interface between the

software product and the hardware components of the system. The following are hardware

requirements.

System : Windows 8 and above

RAM : 8GB And higher

Hard Disk : 50GB(Minimum)

SOFTWARE REQUIREMENTS:

Software Requirements specifies the logical characteristics of each interface and

software components of the system.The following are software requirements.

Operating System :Windows 8 and above

Programming Language : Python3

Tool :Pycharm

Following are the Python Libraries Used :

 Import math

 Import Pyautogui

 Import cv2

 Import mediapipe as mp

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 6

2.6 MODULEDESCRPTION

● USERMODULE:
User Module:In this user module the user faces the web camera and performs some

hand gestures

● SYSTEMMODULE:

System module: In this module it recognizes the gesture moments and perform

several operations such as drag and drop,finger counting,right click and left

clicks of a mouse operation.

3. ARCHITECTURE

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 7

3. ARCHITECTURE

3.1 PROJECTARCHITECTURE

The project architecture given a brief description about how our system will

function.We used built-in python libraries for the whole user-computer interaction.The user

first sits in front of the camera and performs various gestures, the gestures are recorded by the

camera and sends it to the system for processing.Then the results are displayed on the screen.

Figure 3.1 Project Architecture for Finger Counting and Virtual Mouse using CV Learn

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 8

3.2 USE CASEDIAGRAM

A use case diagram can summarize the details of our system's users (also known as actors)

and their interactions with the system. The use cases and actors in use-case diagrams describe

what the system does and how the actors use it, but not how the system operates internally.

Figure 3.2 Use Case Diagram for Finger Counting and Virtual Mouse using CV Learn

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 9

3.3 CLASSDIAGRAM

Class diagram is a static diagram. It represents the static view of an application. Class

diagram is not only used for visualizing, describing, and documenting different aspects of a system

but also for constructing executable code of the software application.

Figure 3.3 Class Diagram for Finger Counting and Virtual Mouse using CV Learn

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 10

3.4 SEQUENCEDIAGRAM

A sequence diagram is a Unified Modeling Language (UML) diagram that illustrates the

sequence of messages between objects in an interaction. A sequence diagram consists of a group

of objects that are represented by lifelines, and the messages that they exchange over time

during the interaction.A sequence diagram shows the sequence of messages passed between

objects. Sequence diagrams can also show the control structures between objects.

.

Figure 3.4 Sequence Diagram for Finger Counting and Virtual Mouse using

CV Learn

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 11

3.5 ACTIVITYDIAGRAM

Activity diagram is another important diagram in UML to describe the dynamic aspects of

the system.Activity diagram is basically a flowchart to represent the flow from one activity to

another activity. The activity can be described as an operation of the system.The control flow is

drawn from one operation to another. This flow can be sequential, branched, or concurrent. Activity

diagrams deal with all type of flow control by using different elements such as fork, join, etc

Figure 3.5 Activity Diagram for Finger Counting and Virtual Mouse using CV Learn

4. IMPLEMENTATION

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 12

4.IMPLEMENTATION

4.1 HANDTRACKING:

from cvlearn import HandTrackingModule as handTracker

import cv2
cap = cv2.VideoCapture(0)
detector = handTracker.handDetector()while True:
ret, img = cap.read()
img = detector.findHands(img)

cv2.imshow("Result", img)
cv2.waitKey(1)

4.2 FINGERCOUNTING:

from cvlearn import FingerCounter as fc
import cvlearn.HandTrackingModule as handTracker
import cv2

cap = cv2.VideoCapture(0)

detector = handTracker.handDetector(maxHands=1)

counter = fc.FingerCounter()while True:
ret, frame = cap.read()
frame =cv2.flip(frame, 180)

frame = detector.findHands(frame)
lmList, bbox = detector.findPosition(frame)

if lmList:
frame1 = counter.drawCountedFingers(frame, lmList, bbox)

cv2.imshow("res", frame)
key = cv2.waitKey(1)
if key == 27:
break

cv2.destroyAllWindows()

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 13

4.3 VIRTUALMOUSE:

import cv2
import mediapipe as mp
import pyautogui
import math
from enum import IntEnum
from ctypes import cast, POINTER
from comtypes import CLSCTX_ALL
from pycaw.pycaw import AudioUtilities, IAudioEndpointVolume
from google.protobuf.json_format import MessageToDict
import screen_brightness_control as sbcontrol

pyautogui.FAILSAFE = False
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands

Gesture Encodings
class Gest(IntEnum):

Binary Encoded
FIST = 0
PINKY = 1
RING = 2
MID = 4
LAST3 = 7
INDEX = 8
FIRST2 = 12
LAST4 = 15
THUMB = 16
PALM = 31

Extra Mappings
V_GEST = 33
TWO_FINGER_CLOSED = 34
PINCH_MAJOR =35
PINCH_MINOR =36

Multi-handedness Labels
class HLabel(IntEnum):
MINOR = 0
MAJOR = 1

Convert Mediapipe Landmarks to recognizable Gestures
class HandRecog:

def _init_(self, hand_label):
self.finger = 0

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 14

self.ori_gesture = Gest.PALM
self.prev_gesture = Gest.PALM
self.frame_count = 0
self.hand_result = None
self.hand_label = hand_label

def update_hand_result(self, hand_result):
self.hand_result = hand_result

def get_signed_dist(self, point):
sign = -1
if self.hand_result.landmark[point[0]].y < self.hand_result.landmark[point[1]].y:
sign = 1

dist = (self.hand_result.landmark[point[0]].x - self.hand_result.landmark[point[1]].x) ** 2
dist += (self.hand_result.landmark[point[0]].y - self.hand_result.landmark[point[1]].y) ** 2
dist = math.sqrt(dist)
return dist * sign

def get_dist(self, point):
dist = (self.hand_result.landmark[point[0]].x - self.hand_result.landmark[point[1]].x) ** 2
dist += (self.hand_result.landmark[point[0]].y - self.hand_result.landmark[point[1]].y) ** 2
dist = math.sqrt(dist)
return dist

def get_dz(self, point):
return abs(self.hand_result.landmark[point[0]].z - self.hand_result.landmark[point[1]].z)

Function to find Gesture Encoding using current finger_state.
Finger_state: 1 if finger is open, else 0
def set_finger_state(self):
if self.hand_result == None:
return

points = [[8, 5, 0], [12, 9, 0], [16, 13, 0], [20, 17, 0]]
self.finger = 0
self.finger = self.finger | 0 # thumb
for idx, point in enumerate(points):

dist = self.get_signed_dist(point[:2])
dist2 = self.get_signed_dist(point[1:])

try:
ratio = round(dist / dist2, 1)

except:
ratio = round(dist1 / 0.01, 1)

self.finger = self.finger << 1
if ratio > 0.5:
self.finger = self.finger | 1

Handling Fluctations due to noise

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 15

def get_gesture(self):
if self.hand_result == None:
return Gest.PALM

current_gesture = Gest.PALM
if self.finger in [Gest.LAST3, Gest.LAST4] and self.get_dist([8, 4]) < 0.05:
if self.hand_label == HLabel.MINOR:
current_gesture = Gest.PINCH_MINOR

else:
current_gesture = Gest.PINCH_MAJOR

elif Gest.FIRST2 == self.finger:
point = [[8, 12], [5, 9]]
dist1 = self.get_dist(point[0])
dist2 = self.get_dist(point[1])
ratio = dist1 / dist2
if ratio > 1.7:
current_gesture = Gest.V_GEST

else:
if self.get_dz([8, 12]) < 0.1:
current_gesture = Gest.TWO_FINGER_CLOSED

else:
current_gesture = Gest.MID

else:
current_gesture = self.finger

if current_gesture == self.prev_gesture:
self.frame_count += 1

else:
self.frame_count = 0

self.prev_gesture =current_gesture

if self.frame_count > 4:
self.ori_gesture =current_gesture

return self.ori_gesture

Executes commands according to detected gestures
class Controller:
tx_old = 0
ty_old = 0
trial = True
flag = False
grabflag = False
pinchmajorflag = False
pinchminorflag = False
pinchstartxcoord = None
pinchstartycoord = None
pinchdirectionflag = None

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 16

prevpinchlv = 0
pinchlv = 0
framecount = 0
prev_hand = None
pinch_threshold = 0.3

def getpinchylv(hand_result):
dist = round((Controller.pinchstartycoord - hand_result.landmark[8].y) * 10, 1)
return dist

def getpinchxlv(hand_result):
dist = round((hand_result.landmark[8].x - Controller.pinchstartxcoord) * 10, 1)
return dist

def changesystembrightness(self):
currentBrightnessLv = sbcontrol.get_brightness() / 100.0
currentBrightnessLv += Controller.pinchlv / 50.0
if currentBrightnessLv > 1.0:
currentBrightnessLv = 1.0

elif currentBrightnessLv <0.0:
currentBrightnessLv = 0.0

sbcontrol.fade_brightness(int(100 * currentBrightnessLv), start=sbcontrol.get_brightness())

def changesystemvolume(self):
devices = AudioUtilities.GetSpeakers()
interface = devices.Activate(IAudioEndpointVolume.iid, CLSCTX_ALL, None)
volume = cast(interface, POINTER(IAudioEndpointVolume))
currentVolumeLv =volume.GetMasterVolumeLevelScalar()
currentVolumeLv += Controller.pinchlv / 50.0
if currentVolumeLv > 1.0:
currentVolumeLv = 1.0

elif currentVolumeLv <0.0:
currentVolumeLv = 0.0

volume.SetMasterVolumeLevelScalar(currentVolumeLv, None)

def scrollVertical(self):
pyautogui.scroll(120 if Controller.pinchlv > 0.0 else -120)

def scrollHorizontal(self):
pyautogui.keyDown('shift')
pyautogui.keyDown('ctrl')
pyautogui.scroll(-120 if Controller.pinchlv > 0.0 else 120)
pyautogui.keyUp('ctrl')
pyautogui.keyUp('shift')

Locate Hand to get Cursor Position
Stabilize cursor by Dampening
def get_position(hand_result):
point = 9
position = [hand_result.landmark[point].x, hand_result.landmark[point].y]
sx, sy = pyautogui.size()

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 17

x_old, y_old = pyautogui.position()
x = int(position[0] * sx)
y = int(position[1] * sy)
if Controller.prev_hand is None:
Controller.prev_hand = x, y

delta_x = x - Controller.prev_hand[0]
delta_y = y - Controller.prev_hand[1]

distsq = delta_x * 2 + delta_y * 2
ratio = 1
Controller.prev_hand = [x, y]

if distsq <= 25:
ratio = 0

elif distsq <= 900:
ratio = 0.07 * (distsq ** (1 / 2))

else:
ratio = 2.1

x, y = x_old + delta_x * ratio, y_old + delta_y * ratio
return (x, y)

def pinch_control_init(hand_result):
Controller.pinchstartxcoord = hand_result.landmark[8].x
Controller.pinchstartycoord = hand_result.landmark[8].y
Controller.pinchlv = 0
Controller.prevpinchlv = 0
Controller.framecount = 0

Hold final position for 5 frames to change status
def pinch_control(hand_result, controlHorizontal, controlVertical):
if Controller.framecount == 5:
Controller.framecount = 0
Controller.pinchlv = Controller.prevpinchlv

if Controller.pinchdirectionflag == True:
controlHorizontal() # x

elif Controller.pinchdirectionflag == False:
controlVertical() # y

lvx = Controller.getpinchxlv(hand_result)
lvy = Controller.getpinchylv(hand_result)

if abs(lvy) > abs(lvx) and abs(lvy) > Controller.pinch_threshold:
Controller.pinchdirectionflag = False
if abs(Controller.prevpinchlv - lvy) < Controller.pinch_threshold:
Controller.framecount += 1

else:
Controller.prevpinchlv = lvy
Controller.framecount = 0

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 18

elif abs(lvx) > Controller.pinch_threshold:
Controller.pinchdirectionflag = True
if abs(Controller.prevpinchlv - lvx) < Controller.pinch_threshold:
Controller.framecount += 1

else:
Controller.prevpinchlv = lvx
Controller.framecount = 0

def handle_controls(gesture, hand_result):x,
y = None, None
if gesture != Gest.PALM:
x, y = Controller.get_position(hand_result)

flag reset
if gesture != Gest.FIST and Controller.grabflag:
Controller.grabflag = False
pyautogui.mouseUp(button="left")

if gesture != Gest.PINCH_MAJOR and Controller.pinchmajorflag:
Controller.pinchmajorflag = False

if gesture != Gest.PINCH_MINOR and Controller.pinchminorflag:
Controller.pinchminorflag = False

implementation
if gesture == Gest.V_GEST:
Controller.flag = True
pyautogui.moveTo(x, y, duration=0.1)

elif gesture == Gest.FIST:
if not Controller.grabflag:
Controller.grabflag = True
pyautogui.mouseDown(button="left")

pyautogui.moveTo(x, y, duration=0.1)

elif gesture == Gest.MID and Controller.flag:
pyautogui.click()
Controller.flag = False

elif gesture == Gest.INDEX and Controller.flag:
pyautogui.click(button='right')
Controller.flag = False

elif gesture == Gest.TWO_FINGER_CLOSED and Controller.flag:pyautogui.doubleClick()
Controller.flag = False

elif gesture == Gest.PINCH_MINOR:
if Controller.pinchminorflag == False:
Controller.pinch_control_init(hand_result)
Controller.pinchminorflag = True

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 19

Controller.pinch_control(hand_result, Controller.scrollHorizontal, Controller.scrollVertical)

elif gesture == Gest.PINCH_MAJOR:
if Controller.pinchmajorflag == False:
Controller.pinch_control_init(hand_result)
Controller.pinchmajorflag = True

Controller.pinch_control(hand_result, Controller.changesystembrightness,
Controller.changesystemvolume)

'''
Main Class

Entry point of Gesture Controller
'''

class GestureController:
gc_mode = 0
cap = None
CAM_HEIGHT = None
CAM_WIDTH = None
hr_major = None # Right Hand by default
hr_minor = None # Left hand by default
dom_hand = True

def _init_(self):
GestureController.gc_mode = 1
GestureController.cap = cv2.VideoCapture(0)
GestureController.CAM_HEIGHT =

GestureController.cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
GestureController.CAM_WIDTH =

GestureController.cap.get(cv2.CAP_PROP_FRAME_WIDTH)

def classify_hands(results):
left, right = None, None
try:
handedness_dict = MessageToDict(results.multi_handedness[0])
if handedness_dict['classification'][0]['label'] == 'Right':
right =results.multi_hand_landmarks[0]

else:
left =results.multi_hand_landmarks[0]

except:
pass

try:
handedness_dict = MessageToDict(results.multi_handedness[1])
if handedness_dict['classification'][0]['label'] == 'Right':
right =results.multi_hand_landmarks[1]

else:
left =results.multi_hand_landmarks[1]

except:

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 20

pass

if GestureController.dom_hand == True:
GestureController.hr_major = right
GestureController.hr_minor = left

else:
GestureController.hr_major = left
GestureController.hr_minor = right

def start(self):

handmajor = HandRecog(HLabel.MAJOR)
handminor = HandRecog(HLabel.MINOR)

with mp_hands.Hands(max_num_hands=2, min_detection_confidence=0.5,
min_tracking_confidence=0.5) as hands:

while GestureController.cap.isOpened() and GestureController.gc_mode:
success, image = GestureController.cap.read()

if not success:
print("Ignoring empty camera frame.")
continue

image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = hands.process(image)

image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

if results.multi_hand_landmarks:
GestureController.classify_hands(results)
handmajor.update_hand_result(GestureController.hr_major)
handminor.update_hand_result(GestureController.hr_minor)

handmajor.set_finger_state()
handminor.set_finger_state()
gest_name = handminor.get_gesture()

if gest_name == Gest.PINCH_MINOR:
Controller.handle_controls(gest_name, handminor.hand_result)

else:
gest_name = handmajor.get_gesture()
Controller.handle_controls(gest_name, handmajor.hand_result)

for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(image, hand_landmarks,

mp_hands.HAND_CONNECTIONS)
else:
Controller.prev_hand = None

cv2.imshow('Gesture Controller', image)

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 21

if cv2.waitKey(5) & 0xFF == 13:
break

GestureController.cap.release()
cv2.destroyAllWindows()

uncomment to run directly
gc1 = GestureController()
gc1.start()

5. SCREENSHOTS

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 22

5.SCREENSHOTS

Figure 5.1 Finger Counting

Figure 5.2 Gesture for scrolling Up and Down

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 23

Figure 5.3 Gesture for Left-Click

Figure 5.4 Gesture for Cursor Movement

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 24

Figure 5.5 Gesture for Drop And Drag

Figure 5.6 Gesture for Right-Click

6. TESTING

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 25

6.TESTING

6.1 INTRODUCTION TOTESTING

An estimate says that 50% of whole software development process should be

tested.The errors that are occurred may destroy the entire software. Software testing is

done while coding by the developers and through testing is conducted by testing

experts at various level of code such as module testing, program testing, in-house

testing and testing the product at user’s end. Early discovery of errors and their

remedy is the key to reliable software.

6.2 TYPES OFTESTING

UNIT TESTING

Unit testing involves the design of test cases that validate that the internal

program logic is functioning properly, and that program inputs produce valid outputs.

All decision branches and internal code flow should be validated. It is the testing of

individual software units of the application .it is done after the completion of an

individual unit before integration. This is a structural testing, that relies on

knowledge of its construction and is invasive. Unit tests perform basic tests at

component level and test a specific business process, application, and/or system

configuration. Unit tests ensure that each unique path of a business process performs

accurately to the documented specifications and contains clearly defined inputs and

expected results.

INTEGRATION TESTING

Integration tests are designed to test integrated software components to

determine if they actually run as one program. Testing is event driven and is more

concerned with the basic outcome of screens or fields. Integration tests demonstrate

that although the components were individually satisfaction, as shown by

successfully unit testing, the combination of components is correct and consistent.

Integration testing is specifically aimed at exposing the problems that arise from the

combination of components.

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 26

FUNCTIONAL TESTING

Functional tests provide systematic demonstrations that functions tested are

available as specified by the business and technical requirements, system documentation,

and user manuals.

Functional testing is centered on the following items:

 Valid Input : identified classes of valid input must be accepted.

 Invalid Input : identified classes of invalid input must be rejected.

 Functions : identified functions must be exercised.

 Output : identified classes of application outputs must beexercised.

 Systems/Procedures : interfacing systems or procedures must be invoked. Organization

and preparation of functional tests is focused on requirements, keyfunctions, or special

test cases.

6.3 TESTCASES

Figure 6.3 Test case status

7.CONCLUSION

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 27

7.1 PROJECT CONCLUSION

The main objective of the AI virtual mouse system is to control the mouse cursor

functions by using the hand gestures instead of using a physical mouse. The proposed

system can be achieved by using a webcam or a built-in camera which detects the hand

gestures and hand tip and processes these frames to perform the particular mouse

functions.From the results of the model, we can come to a conclusion that the proposed AI

virtual mouse system has performed very well and has a greater accuracy compared to the

existing models and also the model overcomes most of the limitations of the existing

systems. Since the proposed model has greater accuracy, the AI virtual mouse can be used

for real-world applications, and also, it can be used to reduce the spread of COVID-19,

since the proposed mouse system can be used virtually using hand gestures without using

the traditional physical mouse.

The model has some limitations such as small decrease in accuracy in right click

mouse function and some difficulties in clicking and dragging to select the text. Hence, we

will work next to overcome these limitations by improving the finger tip detection

algorithm to produce more accurate results.

7.2 FUTURE SCOPE

The model proposed has drawbacks like accuracy of left and right click These

limitations will over come in the future work.Further more this can be added with a virtual

keyboard as well.

8.BIBILOGRAPHY

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC 28

8.1 REFERENCES

1. Computer Vision : Models, Learning and Interface, 2012.

2. Computer Vision : Algorithms and Applications2010.

3. Practical Deep Learning for Cloud, Mobile &Edge.

4. Learning OpenCV 4 Computer Vision with Python3.

5. https://xd.adobe.com/ideas/principles/emerging-technology/what-is-
computer-vision-how-does-it-work/

6. https://bdtechtalks.com/2019/01/14/what-is-computer-vision/

8.2 GITHUB LINK
https://github.com/vamshi3145/Virtual_Mouse.py

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC

FINGER COUNTING AND VIRTUAL MOUSE USING CVLEARN

CMRTC

